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A previous paper detailed a novel algorithm, "-machine spectral reconstruction

theory ("MSR), that infers pattern and disorder in planar-faulted, close-packed

structures directly from X-ray diffraction patterns [Varn et al. (2013). Acta Cryst.

A69, 197–206]. Here "MSR is applied to simulated diffraction patterns from four

close-packed crystals. It is found that, for stacking structures with a memory

length of three or less, "MSR reproduces the statistics of the stacking structure;

the result being in the form of a directed graph called an "-machine. For stacking

structures with a memory length larger than three, "MSR returns a model that

captures many important features of the original stacking structure. These

include multiple stacking faults and multiple crystal structures. Further, it is

found that "MSR is able to discover stacking structure in even highly disordered

crystals. In order to address issues concerning the long-range order observed

in many classes of layered materials, several length parameters are defined,

calculable from the "-machine, and their relevance is discussed.

1. Introduction

While crystallography has historically focused on the char-

acterization of materials whose constituent parts are arranged

in an orderly fashion, researchers have become increasingly

interested in materials that display varying amounts of

disorder, several examples being glasses, aerogels (Erenburg

et al., 2005) and amorphous metal oxides (Bataronov et al.,

2004). A broad range of layered materials called polytypes

often show considerable disorder along the stacking direction

and have been the subject of numerous theoretical and

experimental investigations (Jagodzinski, 1949; Trigunayat,

1991; Sebastian & Krishna, 1994). Polytypism is the phenom-

enon in which a three-dimensional solid is built up by the

stacking of identical (or nearly identical)1 two-dimensional

modular units (Price, 1983; Ferraris et al., 2008), which we will

refer to as modular layers (MLs). Each ML is itself crystalline

and the only disorder comes from how adjacent MLs are

stacked. Typically, energetic considerations restrict the

number of ways two MLs can be stacked to a usually small set

of orientations. Thus, the specification of a disordered poly-

type reduces to giving the one-dimensional list of the sequence

of MLs called the stacking sequence.

Polytypes have attracted so much interest in part due to the

multiple crystalline stacking sequences commonly observed –

for two of the most polytypic materials, ZnS and SiC, there are

185 and 250 known periodic stacking structures, respectively

(Mardix, 1986; Nasir et al., 2012). Some of these crystalline

structures have unit cells extending over 100 MLs (Sebastian

& Krishna, 1994). This is in contrast to the calculated inter-ML

interaction range of �1 ML in ZnS (Engel & Needs, 1990)

and �3 MLs in SiC (Cheng et al., 1987, 1988, 1990; Shaw &

Heine, 1990). An important ancillary question is whether the

disordered polytypes so commonly observed in annealed and

as-grown crystals also possess coordination in the stacking of

MLs over such a long range. Additionally, SiC has received

considerable attention recently as a promising candidate for

use as nanowires in advanced electronics devices (Wang et al.,

2011; Mélinon et al., 2007). The electronic properties of SiC

are dependent on both the polytype and the degree of

disorder present.

Significant simplifications in the analysis of X-ray diffrac-

tion patterns (DPs) occur if the disorder in the crystal is

restricted to one dimension and the constituent parts can

assume only discrete positions. This is just the case that arises

in the analysis of polytypes. While the general problem of

1 See Trigunayat (1991) for a discussion of materials that have some variation
in either the structure or stoichiometry of the composite layers. In the present
study, we will assume that the composite layers are identical.
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inverting DPs to obtain structure remains unsolved, this more

restricted one-dimensional case has been much more amen-

able to theoretical analysis. We recently introduced a novel

inference algorithm, "-machine spectral reconstruction theory

("MSR or ‘emissary’) and applied it to the problem of infer-

ring planar disorder from DPs for the special case of close-

packed structures (CPSs) (Varn et al., 2002, 2007, 2013).2

Although we do not find the particular stacking sequence that

generated the experimental DP, we do find a unique, statistical

expression for an ensemble of stacking sequences each of

which could have produced the observed DP. This statistical

description comes in the compact form of an "-machine

(Crutchfield & Young, 1989; Shalizi & Crutchfield, 2001).

We claim in a companion paper (Varn et al., 2013) that

"MSR has many significant features, including the following:

(i) "MSR does not assume any underlying crystal structure,

nor does it require one to postulate a priori any particular

candidate faulting structures. That is, there need not be any

‘parent’ crystal structure into which some preselected faulting

is introduced. (ii) Consequently, "MSR can model specimens

with multiple crystal or fault structures. (iii) Since "MSR does

not require a parent crystal structure, it can detect and

quantify stacking structure in samples with even highly

disordered stacking sequences. (iv) "MSR uses all of the

information available from the DP: Bragg, Bragg-like and

broadband scattering. (v) "MSR results in a minimal and

unique description of the stacking structure in the form of an

"-machine. From knowledge of the "-machine, insight into the

spatial organization of the stacking structure is possible. (vi)

Parameters of physical interest, such as entropy density,

hexagonality and memory length, are directly calculable from

the "-machine.

Our purpose here is fourfold: (i) We wish to validate the

above assertions concerning the efficacy of "MSR by

demonstrating its application to the discovery of pattern and

disorder in layered materials from their DPs. (ii) As developed

in Varn et al. (2013), "MSR can reconstruct processes up to

third-order Markovian. We wish to test the robustness of

"MSR by analyzing DPs from stacking sequences not

describable as third-order Markovian. While we expect that

"MSR will not recover the precise statistics of the original

stacking sequence for these complicated stacking processes,

we wish to understand how much it deviates in these cases. (iii)

We wish to address the issue of long-range order in disordered

polytypes. Thus, we also define length parameters calculable

from the "-machine and discuss their implication for finding

long-range order in polytypes. (iv) Lastly, we wish to

demonstrate how the architecture of the "-machine provides

an intuitive and quantitative understanding of the spatial

organization of layered CPSs.

These goals are convincingly realized by analyzing DPs

derived from simulated stacking sequences where there are no

issues concerning experimental error. We are able to compare

the "-machine reconstructed from DPs with the "-machine that

describes the original stacking structure and, thus, we can

explore how effectively "MSR captures the statistics of these

complicated stacking structures. Additionally, this kind of

analysis also allows us to identify possible difficulties that may

arise when applying "MSR.

The present paper continues the discussion initiated in Varn

et al. (2013) and readers desiring to fully grasp the details of

the examples worked here are urged to consult that paper

before continuing. Our development is organized as follows: in

x2 we provide numerical details about the techniques we use

to analyze the simulated DPs; in x3 we present our analysis of

four simulated DPs using "MSR; in x4 we define several

characteristic lengths calculable from a knowledge of the

"-machine and consider their implications for the long-range

order so ubiquitous in polytypes; and in x5 we give our

conclusions and directions for future work. In a companion

paper we apply "MSR to DPs obtained from single-crystal

X-ray diffraction experiments (Varn et al., 2007).

2. Methods

We use the same notational conventions and definitions

introduced previously (Varn et al., 2013). For each example we

begin with a stacking structure as described by an "-machine.

We generate a sample sequence from the "-machine of length

400 000 in the Hägg notation. We map this spin sequence into

a stacking orientation sequence in the ABC notation. We

directly scan this latter sequence to find the two-layer corre-

lation functions (CFs): QcðnÞ, QaðnÞ and QsðnÞ (Yi & Canright,

1996). For the disordered stacking sequences we treat here,

the CFs typically decay to an asymptotic value of 1=3 for large

n. We set the CFs to 1=3 when they reach ’ 1% of this value,

which usually occurs for n ’ 25–100. We then calculate the

corrected diffracted intensity per ML, Ið‘Þ (Varn et al., 2013)

in increments of �‘ ¼ 0:001 using equations (1) and (2) of

Varn et al. (2013) with a stacking sequence of 10 000 MLs.

Throughout, we refer to the corrected diffracted intensity per

ML, Ið‘Þ, as simply the DP. We now take this simulated DP as

our ‘experimental’ DP.

We apply "MSR (Table 1 of Varn et al., 2013) to each

experimental DP. Since these are simulated DPs, we find that

the figures-of-merit, � and �, are equal to their theoretical

values within numerical error over all unit ‘ intervals.

Therefore, we do not report � and �, and instead perform

"MSR over the interval 0 � ‘ � 1. Further, again since these

are simulated DPs and hence have no error, we are not able to

set an acceptable threshold error � in advance. Instead, each

example, except for Example C, minimally requires the r ¼ 3

solutions. Thus, we solve the spectral equations (SEs) at r ¼ 3

(Appendix A3 of Varn et al., 2013) via a Monte Carlo tech-

nique (Varn, 2001) to find sequence probabilities of length 4.

We take the r ¼ 3 "-machine given in Fig. 2 of Varn et al.

(2013) as our default or candidate "-machine. All causal states

(CSs) and allowed transitions between CSs are initially

assumed present. From the sequence probabilities we estimate
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2 We note that there are no inherent obstacles to applying "MSR to materials
with more complicated MLs or stacking rules (Brindley, 1980; Thompson,
1981; Varn & Canright, 2001). However, the case of CPSs is by no means
merely academic, since several important polytypes, such as SiC and ZnS, are
describable as CPSs.



the transition matrices, T
ðsÞ
Si!Sj

, for making a transition from a

candidate CS Si to a candidate CS Sj on seeing a spin s. We

apply the equivalence relation, equation (11) of Varn et al.

(2013), to generate a final set of CSs. We refer to the resulting

"-machine as the reconstructed or ‘theoretical’ r ¼ 3

"-machine for the DP. In the event that the reconstructed

"-machine assigns to a CS an asymptotic state probability of

less than 0.01, we take that CS to be nonexistent. We use the

same method to find the CFs and the DP for the theoretical

"-machine as we did with the initial "-machine.

We also calculate the information-theoretic quantities

described in x3.1 of Varn et al. (2013) for each example and the

reconstructed "-machine.3

We find that the most calculationally intensive portion of

"MSR is solving the SEs at r ¼ 3. Even so, this is generally

accomplished within a few minutes on a desktop computer

with a �2 GHz Intel Core i7 processor and several GBs of

RAM. The other steps in the reconstruction process require

no more than a few seconds of computer time. It is likely that

the r ¼ 4 SEs (not treated here) can be solved in a comparable

time frame. The SEs become quite cumbersome at r ¼ 5 and it

is unlikely that they are as easily solvable with currently

available desktop technology. However, we strongly suspect

that further investigation will reveal alternate algorithms that

eliminate these calculational difficulties for larger r.

3. Analysis

3.1. Example A

We begin with the sample process given in Fig. 1. One

possible way to interpret this "-machine is to decompose it

into causal-state cycles (CSCs) (Varn et al., 2013), denoted here

by the sequence of CSs enclosed in square brackets []. If one

does this, then one might associate the following crystal and

fault structures with CSCs:4

2H ½S2S5�

3Cþ ½S7�

Deformation fault ½S5S3S7S6�; ½S2S4S0S1�

Growth fault ½S5S3S6�; ½S2S4S1�

where the ‘+’ on 3C indicates that only the positive chirality

(. . . 1111 . . .) structure is present. The faulting is given with

reference to the 2H crystal.5

The DP from this process is shown in Fig. 2. The experi-

enced crystallographer has little difficulty guessing the

underlying crystal structure: the peaks at ‘ ’ 0:50 and at

‘ ’ 1:00 indicate 2H structure; while the peak at ‘ ’ 0:33 is

characteristic of the 3C structure.

The faulting structure is less clear, however. It is known that

various kinds of faults produce different effects on the Bragg

peaks (Sebastian & Krishna, 1994). For instance, both growth

and deformation faults broaden the peaks in the DP of the 2H

structure. The difference is that growth faults broaden the

integer-‘ peaks three times more than the half-integer-‘ peaks,

while peaks broadened due to deformation faulting are about

equal. The full width at half-maximum (FWHM) for the peaks

are 0.028, 0.034 and 0.049 for ‘ ’ 0:33, 0:5 and 1, respectively.

This gives, then, a ratio of about 1:4 for the integer-‘ to half-

integer-‘ broadening, suggesting (perhaps) that deformation

faulting is prominent. One expects there to be no shift in the

position of the peaks for either growth or deformation

faulting; which is not the case here. In fact, the two peaks

associated with the 2H structure at ‘ ’ 0:50 and 1.00 are

shifted by �‘ ’ 0:006 and 0.009, respectively. This analysis is,

of course, only justified for one parent crystal in the overall

structure; nonetheless if we neglect the peak shifts, the simple

intuitive analysis appears to give good qualitative results here.
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Figure 1
The r ¼ 3 theoretical and experimental "-machine for the Example A
process. The nodes represent CSs and the directed arcs are transitions
between them. The edge labels sjp indicate that a transition occurs
between the two CSs on symbol s with probability p. The asymptotic
probabilities for each CS are given in parentheses. We label the states
with the last three spins observed in base-10 notation. (A chart for
converting base-10 into base-2 is given in Table 1.) The large probabilities
to repeat the CSCs [S7] and [S2S5] suggest that one thinks of these cycles
as crystal structure and everything else as faulting.

Table 1
A table for translating base-10 notation into binary notation of length 3.

This is useful for converting the base-10 subscripts of the CSs in Figs. 1, 5 and
13 into the corresponding binary spin sequences.

Base 10 Base 2

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

3 Although we restrict our attention to those computational quantities defined
in Varn et al. (2013), there have recently been other information-theoretic
measures proposed to characterize complexity and natural information
processing in materials (Cartwright & Mackay, 2012).
4 A detailed survey of the structure of the "-machine containing faulting
sequences is a current topic of research. An approximate scheme relating
faulting structures to causal-state paths on an "-machine is given in Varn
(2001).
5 Here and elsewhere, we use the Ramsdell notation to specify crystalline
stacking structures in CPSs. Recall that the "-machine gives stacking
sequences in terms of the Hägg notation. Also, we replace the usual ‘+’ and
‘�’ of the Hägg notation with ‘1’ and ‘0’, respectively.



With the 3C peak, both deformation and growth faults

produce a broadening, the difference being that the broad-

ening is asymmetrical for the growth faults. One also expects

there to be some peak shifting for the deformation faulting.

There is a slight shift (�‘ ’ 0:002) for the ‘ ’ 0:33 peak

and the broadening seems (arguably) symmetric, so one is

tempted to guess that deformation faulting is important here.

Indeed, [S7S6S5S3] is consistent with deformation faulting

in the 3C crystal. Heuristic arguments, while not justified

here, seem to give qualitative agreement with the known

structure.

The "-machine description does better. The reconstructed

"-machine is equivalent to the original one, with CS prob-

abilities and transition probabilities typically within 0.1% of

their original values, except for the transition probability from

from S4 to S1, T
ð1Þ
S4!S1

¼ 0:33, which was 1% too small. Not

surprisingly, the process shown in Fig. 1 is the reconstructed

"-machine and so we do not repeat it.

The two-layer CFs QsðnÞ versus n from the process and from

the reconstructed "-machine are shown in Fig. 3. The differ-

ences are too small to be seen on the graph. We calculate the

profile R factor (Varn et al., 2013) to compare the experi-

mental DP (Example A) to the theoretical DP (reconstructed

"-machine) and find a value ofR = 2%. If we generate several

DPs from the same process, we find profileR factors of similar

magnitude. This error then must be due to sampling. It stems

from the finite spin sequence length we use to calculate the

CFs and our method for setting them equal to their asymptotic

value. This can be improved by taking longer sample sequence

lengths and refining the procedure for setting the CFs to their

asymptotic value. Since profile R factors comparing theory

and experiment are typically much larger than this, at present,

this does not seem problematic. A comparison of the two DPs

is shown in Fig. 2. This kind of agreement is typical of

"MSR from any process that can be represented as an r ¼ 3

"-machine (Varn, 2001).

We find by direct calculation from the "-machine that both

Example A and the reconstructed process have a configura-

tional entropy of h� ¼ 0:44 bits/ML, a statistical complexity of

C� ¼ 2:27 bits and an excess entropy of E ¼ 0:95 bits.

Example A illustrates several points. (i) For processes that

are representable as an r ¼ 3 "-machine, the reconstruction

procedure typically reproduces the "-machine within numer-

ical error. (ii) The "-machine can accommodate two distinct

crystal structures (3C and 2H) and the faulting between them.

(iii) Although the faulting was weak enough so that the DP

retained Bragg-like peaks, we did not need to incorporate this

information into the reconstruction procedure. "MSR detected

the underlying crystal structures without explicit intervention.

(iv) "MSR has no difficulty modeling crystals that are not spin

inversion symmetric (i.e. 0, 1) (Varn & Canright, 2001).

That is, "MSR correctly found that only the positive chirality

3C structure was present.

3.2. Example B

Upon annealing, solid-state transformations can occur in

many polytypes (Sebastian & Krishna, 1994). Here, we

attempt to model twinned 3C structures in the presence of 6H

structure. However, since two crystal structures represented

on an "-machine cannot share a CS, an r ¼ 3 "-machine has an

insufficient memory to capture simultaneously both 3C and

6H structures. For example, on an r ¼ 3 "-machine, 3C+ and

6H share the stacking sequence 111 and, hence, each must visit

S7. The transition probabilities from this latter CS cannot

specify both that the next symbol have a high probability of

being 1 (and thus create 3C+) and a high probability of being 0

(and thus generate 6H). In fact, it is necessary to use an r ¼ 4

"-machine to encompass both structures.

The r ¼ 4 "-machine in Fig. 4 does just this.

[R1R3R7R14R12R8] is the CSC associated with 6H, although

the probability of repeating this CSC more than once is low
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Figure 3
A comparison of the CFs QsðnÞ between the Example A process (blue
diamonds) and the r ¼ 3 reconstructed "-machine (red squares). As with
the DPs the differences are too small to be seen on the graph. As an aid to
the eye, here and in other graphs showing CFs, we connect the values of
adjacent CFs with straight lines. The CFs, of course, are defined only for
integer values of n.

Figure 2
A comparison between the DPs Ið‘Þ generated by Example A (blue solid
line) and by the r ¼ 3 spectrally reconstructed "-machine (red dashed
line). The differences between the DP for Example A and the r ¼ 3
reconstructed "-machine are too small to be seen. We calculate R = 2%,
but this is largely due to numerical error (see text.) The peak at ‘ ’ 1=3
corresponds to the 3C structure and the two peaks at ‘ ’ 1=2 and ‘ ’ 1
to the 2H structure.



owing to the transition probabilities out of CSs R7 and R8.

[R0] and [R15] give the twinned 3C structures.

Employing spectral reconstruction, we find the r ¼ 3

"-machine shown in Fig. 5. All CSs are present and all tran-

sitions, save those that connect S2 and S5, are present. A

comparison of the CFs for the original process and the

reconstructed "-machine is given in Fig. 6. The agreement is

remarkably good. It seems that the r ¼ 3 "-machine picks up

most of the structure in the original process.

There is similar, though not as good, agreement in the DPs,

as Fig. 7 shows. The most notable discrepancies are in the

small rises at ‘ ’ 0:17 and ‘ ’ 0:83. We calculate a profile R

factor of R = 12% between the DPs for Example B and the

reconstructed "-machine. The r ¼ 3 "-machine has difficulty

reproducing the 6H structure in the presence of 3C structure,

as expected.

Given the good agreement between the CFs and the DPs

generated by Example B and the r ¼ 3 "-machine, we are led

to ask what the differences between the two are. In Table 3 we
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Figure 4
The experimental "-machine for Example B. Since it has a memory of
r‘ ¼ 4, we label the states with the last four spins observed: i.e., R12

means that 1100 were the last four spins. (A chart for converting base 10
into base 2 is given in Table 2.) The CSCs [R15] and [R0] give rise to 3C
structure and the CSC [R1R3R7R14R12R8] generates 6H structure.

Figure 5
The reconstructed (theoretical) "-machine at r ¼ 3 for Example B. The
absence of arcs connecting the S2 and S5 CSs indicate that "MSR has
correctly identified that there is no 2H structure in this crystal.

Figure 7
A comparison of the DPs Ið‘Þ between the r ¼ 3 reconstructed
"-machine (red dashed line) and the process of Example B (solid blue
line). The agreement is surprisingly good; we calculate a profile R factor
of R = 12%. The small enhanced scattering at ‘ ’ 1=6 and ‘ ’ 5=6
corresponds to the 6H structure. The r ¼ 3 "-machine has difficulty in
reproducing these because the 6H and the 3C structure both share the S7

and S0 CSs and so require an "-machine reconstructed at r ¼ 4 to
properly disambiguate them.

Figure 6
A comparison of the CFs QsðnÞ generated by the r ¼ 3 reconstructed
"-machine (red squares) and generated by Example B (blue diamonds).
The agreement is generally quite good, except for perhaps n ¼ 3; 6; 7.

Table 2
A table for translating base-10 notation into binary notation of length 4.

This is useful for converting the base-10 subscripts of the CSs in Fig. 4 into the
corresponding binary spin sequences.

Base 10 Base 2

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111



give the frequencies of the eight length-3 sequences generated

by each process. The agreement is excellent. They both give

nearly the same probabilities (�0.32) for the most common

length-3 sequences, 111 and 000. Example B does forbid two

length-3 sequences, 101 and 010, which the reconstructed

r ¼ 3 "-machine allows with a small probability (�0.03). At

the level of length-3 sequences, the "-machine is capturing

most of the structure in the stacking sequence.

A similar analysis allows us to compare the probabilities of

the 16 length-4 sequences generated by each; the results are

given in Table 4. There are more striking differences here. The

frequencies of the two most common length-4 sequences in

Example B, PrðExÞð1111Þ ¼ PrðExÞð0000Þ ¼ 0:227, are over-

estimated by the r ¼ 3 "-machine, which assigns them a

probability of PrðThÞð1111Þ ’ PrðThÞð0000Þ ’ 0:30 each. Simi-

larly, sequences forbidden by Example B – 1101, 1011, 1010,

1001, 0110, 0101, 0100, 0010 – are not necessarily forbidden

by the r ¼ 3 "-machine. In fact, the r ¼ 3 "-machine forbids

only two of them, 0101 and 1010. This implies that the r ¼ 3

"-machine can find spurious sequences that are not in the

original stacking sequence. This is to be expected. But the

r ¼ 3 "-machine does detect important features of the original

process. It finds that this is a twinned 3C structure. It also finds

that 2H structure plays no role in the stacking process. (We see

this by the absence of transitions between S2 and S5 in Fig. 5.)

We can also compare the probability that each "-machine

assigns to seeing a 111000 sequence, the sequence that

generates the 6H structure. For Example B, direct calculation

from the "-machine, Fig. 4, gives a probability of

PrðExÞð111000Þ ¼ 0:09. In contrast, a similar calculation from

the theoretical "-machine, Fig. 5, gives a much lower value,

PrðThÞð111000Þ ¼ 0:006. This discrepancy is directly related to

the fact that 3C and 6H share the S0 and S7 CSs and, thus, the

r ¼ 3 "-machine cannot simultaneously model both 3C and 6H

structure.

We find by direct calculation that the Example B process

has a configurational entropy of h� ¼ 0:51 bits/ML, a statis-

tical complexity of C� ¼ 2:86 bits and an excess entropy of

E ¼ 0:82 bits. The reconstructed process gives similar results

with a configurational entropy h� ¼ 0:54 bits/ML, a statistical

complexity of C� ¼ 2:44 bits and an excess entropy of

E ¼ 0:83 bits.

Example B illustrates several points. (i) It is possible, at

least in some cases, to model an r ¼ 4 process on an r ¼ 3

"-machine. It is likely, though, that "MSR at r ¼ 3 will fail for

some processes not describable by an r ¼ 3 "-machine. We

discuss this in more detail in x3.5. (ii) Even though "MSR does

not detect the true process here, it does reveal important

structural features of that process. (iii) The sequence prob-

abilities found from solving the SEs can differ from those of

the true process and "MSR can assign small probabilities to

sequences forbidden by the true process.

3.3. Example C

We treat this next system, Example C, to contrast it with the

last and to demonstrate how pasts with equivalent futures are

merged to form CSs. The "-machine for this system is shown in

Fig. 8 and is known as the Golden Mean Process. The rule for

generating the Golden Mean Process is simply stated: a 0 or 1

are allowed with equal probability unless the previous spin

was a 0, in which case the next spin is a 1. Clearly then, this

process needs only to remember the previous spin and, hence,

it has a memory length of r ¼ 1. It forbids the sequence 00 and

all sequences that contain this as a subsequence. The process is

so-named because the total number of allowed sequences

grows with sequence length at a rate given by the golden mean

’ ¼ ð1þ
ffiffiffi
5
p
Þ=2.

We employ the "MSR algorithm and find the "-machine

given (again) in Fig. 8 at r ¼ 1. A comparison of the CFs from

Example C and the Golden Mean Process are given in Fig. 9.

The differences are too small to be seen. We next compare the

DPs and these are shown in Fig. 10. We find excellent agree-

ment and calculate a profileR factor ofR = 2%. At this point
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Table 4
The frequencies of length-4 sequences obtained from Example B and the
"-machine reconstructed at r ¼ 3.

Sequence Example B "MSR

1111 0.227 0.300
1110 0.091 0.024
1101 0.000 0.029
1100 0.091 0.052
1011 0.000 0.027
1010 0.000 0.000
1001 0.000 0.049
1000 0.091 0.027
0111 0.091 0.025
0110 0.000 0.045
0101 0.000 0.000
0100 0.000 0.026
0011 0.091 0.046
0010 0.000 0.030
0001 0.091 0.026
0000 0.227 0.296

Figure 8
The recurrent portion of the "-machine for the Golden Mean Process,
Example C. The process has a memory length of r ¼ 1, and so we label
each CS by the last spin seen.

Table 3
The frequencies of length-3 sequences obtained from Example B and the
"-machine reconstructed at r ¼ 3.

Sequence Example B "MSR

111 0.318 0.324
110 0.091 0.081
101 0.000 0.027
100 0.091 0.076
011 0.091 0.070
010 0.000 0.026
001 0.091 0.076
000 0.318 0.322



"MSR should terminate, as we have found satisfactory

agreement (to within the numerical error of our technique)

between ‘experiment’, Example C, and ‘theory’, the recon-

structed "-machine.

Let us suppose that instead, we increment r and follow the

"MSR algorithm as if the agreement at r ¼ 1 had been

unsatisfactory. In this case, we would have generated the

‘"-machine’ shown in Fig. 11 at the end of step 3(b) [Table 1 of

Varn et al. (2013)]. We have yet to apply the equivalence

relation, equation (11) of Varn et al. (2013), and so let us call

this the nonminimal "-machine. That is, we have not yet

combined pasts with equivalent futures to form CSs, step 3(c)

[Table 1 of Varn et al. (2013)]. Let us do that now.

We observe that the state S2 is different from the other two,

S1 and S3, in that one can only see the spin 1 upon leaving this

state. Therefore, it cannot possibly share the same futures as

S1 and S3, so no equivalence between them is possible.

However, we do see that Prð1jS1Þ ¼ Prð1jS3Þ ¼ 1=2 and

Prð0jS1Þ ¼ Prð0jS3Þ ¼ 1=2 and, thus, these states share the

same probability of seeing futures of length 1. More formally,

we can write

T
ðsÞ
01!1s ¼ T

ðsÞ
11!1s: ð1Þ

Since we are labeling the states by the last two symbols seen at

r ¼ 2, within our approximation they do have the same futures

and so S1 and S3 can be merged to form a single CS. The result

is the "-machine shown in Fig. 8.

In general, in order to merge two histories, we check that

each has an equivalent future up to the memory length r. In

this example, we need only check futures up to length 1 since,

after the addition of one spin (s), each is labeled by the same

past: namely, 1s. Had we tried to merge the pasts 11 and 10, we

would need to check all possible futures after the addition of

two spins, after which the states would have the same futures

(by assumption). That is, we would require

T
ðsÞ
11!1s ¼ T

ðsÞ
10!0s ð2Þ

and

T
ðs0Þ
1s!ss0 ¼ T

ðs0Þ
0s!ss0 ð3Þ

for all s and s0.

We find by direct calculation from the "-machine that

both Example C and the reconstructed process have a

configurational entropy of h� ¼ 0:67 bits/ML, a statistical

complexity of C� ¼ 0:92 bits and an excess entropy of

E ¼ 0:25 bits.

Example C illustrates several important aspects of "MSR.

(i) We explicitly demonstrate the merging of pasts that

have equivalent futures. Thus, "MSR builds a model (within

the space of Markov processes) that invokes the least

complexity to describe the DP. (ii) With h� ¼ 0:67 bits/ML,6

Example C has significant disorder. Nonetheless, "MSR has

no difficulty finding the true process. (iii) "MSR needs no

a priori information about the underlying crystal structure.

Indeed, Example C really does not have any underlying
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Figure 11
The r ¼ 2 reconstructed nonminimal "-machine for the Golden Mean
Process, Example C. Applying the equivalence relation, equation (11) of
Varn et al. (2013), we find that S1 and S3 have the same futures, and thus
should be collapsed into a single CS. Doing so gives the "-machine in
Fig. 8.

Figure 9
A comparison of the CFs QsðnÞ generated by the r ¼ 1 reconstructed
"-machine (red squares) and the Golden Mean Process of Example C
(blue diamonds). The CFs decay quickly to their asymptotic value of 1=3.

Figure 10
A comparison of the DPs for Example C (solid blue line) and the
reconstructed r ¼ 1 "-machine (dashed red line). The agreement is
excellent. One finds a profile R factor of 2% between the experimental
DP, Example C and the theoretical DP calculated from the reconstructed
"-machine.

6 For comparison, a completely random stacking of MLs for CPSs would have
h� ¼ 1 bit/ML.



crystal structure. (iv) As with Example A, the fact that this

process does not have spin inversion symmetry presents no

difficulties.

3.4. Example D

We now consider a simple finite-state process that cannot be

represented by a finite-order Markov process, called the Even

Process (Crutchfield & Feldman, 2003; Crutchfield, 1992), as

the previous examples could. The Even Language (Hopcroft

& Ullman, 1979; Badii & Politi, 1997) consists of sequences

such that between any two 0s either there are no 1s or an even

number of 1s. In a sequence, therefore, if the immediately

preceding spin was a 1, then the admissibility of the next spin

requires remembering the evenness of the number of previous

consecutive 1s, since seeing the last 0. In the most general

instance, this requires an indefinitely long memory and so the

Even Process cannot be represented by any finite-order

Markov chain.

We define the Even Process as follows: if a 0 or an even

number of consecutive 1s were the last spin(s) seen, then the

next spin is either 1 or 0 with equal probability; otherwise the

next spin is 1. While this might seem somewhat artificial for

the stacking of simple polytypes, one cannot exclude this class

of (so-called sofic) structures on physical grounds. Indeed,

such long-range memories may be induced in solid-state phase

transformations between two crystal structures (Kabra &

Pandey, 1988; Varn & Crutchfield, 2004). It is instructive,

therefore, to explore the results of our procedure on processes

with such structures.

Additionally, analyzing a sofic process provides a valuable

test of "MSR as practiced here. Specifically, we invoke a finite-

order Markov approximation for the solution of the r ¼ 3

equations and we shall determine how closely this approx-

imates the Even Process with its effectively infinite range.

The "-machine for this process is shown in Fig. 12.

Its causal-state transition structure is equivalent to that

in the "-machine for the Golden Mean Process. They differ

only in the spins emitted upon transitions out of the S1

(Seven) CS. It seems, then, that this process should be easy to

detect.

The result of "-machine reconstruction at r ¼ 3 is shown in

Fig. 13. Again, it is interesting to see if the sequences

forbidden by the Even Process are also forbidden by the r ¼ 3

"-machine. One finds that the sequence 010 – forbidden by the

process – is also forbidden by the reconstructed "-machine.

This occurs because S2 is missing.7 We do notice that the

reconstructed "-machine has much more ‘structure’ than the

original process. We now examine the source of this additional

structure.

Let us first contrast differences between "MSR and other

"-machine reconstruction techniques, taking the subtree-

merging method (SMM) (Crutchfield & Young, 1989; Hansen,

1993; Crutchfield, 1994) as the alternative prototype. There

are two major differences. First, since here we estimate

sequence probabilities from the DPs and not a symbol

sequence, we find it necessary to invoke the memory-length

reduction approximation (Varn et al., 2013) at r � 3 to obtain

a complete set of equations. Specifically, we assume that (i)

only histories up to range r are needed to make an optimal

prediction of the next spin and (ii) we can label CSs by their

length-r history.

We can test these assumptions in the following way. For (i),

we compare the frequencies of length-4 sequences obtained

from each method. This is shown in Table 5. The agreement is

excellent. All sequence frequencies are within �0:01 of the

correct values. The small differences are due to the memory-

length reduction approximation. So this does have an effect,

but it is small here.

To test (ii), we can compare the "-machines generated from

each method given the same ‘exact’ or ‘correct’ length-4

sequence probabilities. Doing so, SMM gives the "-machine for

the Even Process shown in Fig. 12. "MSR gives a different

result. After merging pasts with equivalent futures, one finds

the "-machine shown in Fig. 14. For clarity, we explicitly show

the length-3 sequence histories associated with each CS, but

do not write out the asymptotic state probabilities.
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Figure 12
The recurrent portion of the "-machine for the Even Process, Example D.
Since the CSs cannot be specified by a finite history of previous spins,
we have labeled them Seven and Sodd. We find that this "-machine has a
statistical complexity of C� ¼ 0:92 bits.

Figure 13
The r ¼ 3 reconstructed "-machine for the Even Process of Example D.
Since the Even Process forbids the sequences f012kþ10; k ¼ 0; 1; 2; . . .g
and all sequences containing them, it is satisfying to see that 010 is
forbidden by the reconstructed "-machine, as shown by the missing S2 CS.
We find that C� ¼ 2:58 bits.

7 We do note that the solution of the SEs at r ¼ 3 assigns the sequences 0100
and 0010 a small probability, PrðThÞð0100Þ ’ PrðThÞð0010Þ ’ 0:005, which
implies that the sequence 010 is also present with a small probability,
PrðThÞð010Þ< 0:01. Since this falls below our threshold, we take this CS as being
nonexistent. For this example, probabilities of this small magnitude are not
meaningful, as the SEs at r ¼ 3 are difficult to satisfy with purely real
probabilities. We also note that the solution of the SEs at r ¼ 2 does forbid the
010 sequence. For additional discussion, see Varn (2001).



The "-machine generated by "MSR is in some respects as

good as that generated by SMM. Both reproduce the sequence

probabilities up to length 4 from which they were estimated.

The difference is that for "MSR, our insistence that histories

be labeled by the last r spins forces the representation to be

Markovian of range r. Here, a simpler model for the process,

as measured by the smaller statistical complexity (C� ¼ 0:92

bits as compared to 1:92 bits), can be found. So, the notion of

minimality is violated. That is, "MSR searches only a subset of

the space from which processes can belong. Should the true

process lie outside this subset (Markovian processes of range

r), then "MSR returns an approximation to the true process.

The approximation may be both more complex and less

predictive than the true process. It is interesting to note that

had we given SMM the sequence probabilities found from the

solutions of the SEs, we would have found (within some error)

the "-machine given in Fig. 12.

We find, then, that there are two separate consequences to

applying "MSR that affect the reconstructed "-machine. The

first is that for r � 3, the memory-length reduction approx-

imation must be invoked to obtain a complete set of equations.

This approximation limits the histories treated and can affect

the values estimated for the sequence probabilities. The

second is the state-labeling scheme. Only for Markovian

(nonsofic) processes can CSs be labeled by a unique finite

history. Making this assumption effectively limits the class of

processes one can detect to those that are block-r Markovian.

To see this more clearly, we can catalog the possible histories

that lead to the two CSs in Fig. 12. In doing so, we find that the

histories 000, 011, 110, 100 and 100 always leave the process in

CS Seven. Similarly, the histories 001 and 101 always leave the

process in CS Sodd. But having seen the history 111 does not

specify the CS as one can arrive in both CSs from this history.

So, the labeling of CSs by histories of a finite length fails here.

Then, why do we not find sequence probabilities by solving

the SEs, using SMM to reconstruct the "-machine? There are

two reasons. The first is that in general one must know

sequence probabilities for longer sequences than is necessary

for "MSR. Solving the SEs for these longer sequence

frequencies is onerous. The second is that error in the

sequence probabilities found from solving the SEs for these

longer sequences makes identifying equivalent pasts almost

impossible. The Even Process is an exception here, since one

needs to consider only futures of length 1. This is certainly not

the case in general.

Having explored the differences between "MSR and SSM,

we now return to a comparison between CFs and DPs

generated by the "MSR and the Even Process. The CFs for the

Even Process and the reconstructed "-machine are given in

Fig. 15. We see that both decay quite quickly to their asymp-

totic values of 1/3. There is good agreement, except in the

region between 5<� n<� 10. Examining the DPs in Fig. 16, we

see that there is likewise good agreement except in the region

0:7<� ‘<� 0:9. We calculate the profile R factor between the

theoretical and experimental DPs to be R = 9%.

We find by direct calculation from the Even Process that it

has a configurational entropy of h� ¼ 0:67 bits/ML, a statis-

tical complexity of C� ¼ 0:92 bits and an excess entropy of

E ¼ 0:91 bits. The reconstructed "-machine gives information-
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Figure 14
The "-machine inferred from the exact sequence frequencies for the Even
Process of Example D. The CSs are labeled with the (possibly several)
length-3 histories that can lead to them. We find that C� ¼ 1:92 bits.

Table 5
The frequencies of length-4 sequences obtained from "MSR and SMM
for the Even Process, Example D.

At most, they differ by �0:01.

Sequence "MSR SMM

1111 0.24 0.25
1110 0.09 0.08
1101 0.09 0.08
1100 0.08 0.08
1011 0.08 0.08
1010 0.00 0.00
1001 0.04 0.04
1000 0.04 0.04
0111 0.09 0.08
0110 0.07 0.08
0101 0.00 0.00
0100 <0.01 0.00
0011 0.08 0.08
0010 <0.01 0.00
0001 0.05 0.04
0000 0.04 0.04

Figure 15
A comparison of the CFs QsðnÞ generated by the r ¼ 3 reconstructed
"-machine (red squares) and the Even Process of Example D (blue
diamonds). The CFs decay quickly to their asymptotic value of 1=3.



theoretic quantities that are rather different. We find a

configurational entropy of h� ¼ 0:79 bits/ML, a statistical

complexity of C� = 2.58 bits and an excess entropy of E =

0.21 bits. Table 6 summarizes these properties along with

those, for comparison, of the previous examples.

One reason that the reconstructed "-machine gives CFs and

DPs in such good agreement with the Even Process in spite of

the fact that the information-theoretic quantities are different

is the insensitivity of the CFs and DPs to the frequencies of

individual long sequences: equation (9) of Varn et al. (2013)

sums sequence probabilities to find CFs. The fact that the

Even Process has such a long memory is masked by this.

However, information-theoretic quantities are sensitive to the

structure of long sequences. "MSR at r ¼ 4 should prove

interesting, in this light, since the Even Process picks up

another forbidden sequence – 01110 – and this additional

structure would be reflected in the reconstructed "-machine.

Example D illustrates several significant features of "MSR.

(i) Most importantly, "MSR is limited to discovering Markov

processes only. (ii) "MSR can result in an "-machine that is

more complex than the original process (2.58 versus 0.92 bits)

but less predictive (0.79 versus 0.67 bits/ML). Nonetheless, the

resultant "-machine does approximate the true process. (iii)

As in Example C, we find that "MSR is applicable for DPs

where there is only broadband scattering without Bragg or

Bragg-like peaks and, thus, high disorder and no discernible

underlying crystal structure.

3.5. Challenges when applying """MSR

We have considered four examples that demonstrate

successful applications of "MSR. We have found instances,

however, when "MSR has difficulties converging to a satis-

factory result. We now analyze each step in "MSR as given in

Table 1 of Varn et al. (2013) and discuss possible problems that

may be encountered. We concentrate here on issues that arise

primarily in the application of "MSR. There are of course

many experimental considerations that frustrate the analysis

of DPs in layered materials, some of which are discussed in,

e.g., Velterop et al. (2000).

Step 1. Several problems can arise here due to data quality.

One is that the figures-of-merit, � and �, are sufficiently

different from their theoretical values over all possible ‘
intervals that "MSR should not even be attempted. Even if

one does find an interval such that they indicate satisfactory

DPs, it is possible that the CFs extracted over this interval are

unphysical. That is, there is no guarantee that all of the CFs

are both positive and less than unity. In such a case, no

stacking of MLs can reproduce these CFs. Finally, if error

ranges have not been reported with the experimental data, it

may not be possible to set the error threshold �.

Step 2. The Prð!rÞ solutions to the SEs are not guaranteed

to be either real or positive for r � 3. If this is so, then no

physical stacking of MLs can reproduce the CFs from the DP.

Step 3. Given Prð!rÞ that satisfy the elementary conditions

of probability (i.e., there is no difficulty at step 2), step 3 will

return a machine that generates Prð!rÞ. It is possible, however,

that the resulting CSs are not strongly connected, and thus the

result may not be interpreted as a single "-machine.

Step 4. There are no difficulties here.

Step 5. It is possible that one is required to go to an r that is

cumbersome to calculate. In this case, one terminates the

procedure through practicality.

We find that the roots of these difficulties can be ultimately

traced to four problems: (i) excessive error in the DP, (ii) the

process has statistics that are too complex to be captured by a

finite-range Markov process, (iii) the memory-length approx-

imation is not satisfied and (iv) the initial assumptions of

polytypism are violated. We are likely to discover (i) in step 1.

For (ii) and (iii), we find no difficulties at step 1, but rather at

steps 2, 3 and 5. For (iv), we have not examined this case in

detail. However, we expect that if the assumptions of the
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Table 6
Measures of intrinsic computation calculated from the processes of
Examples A, B, C and D, and their (r ¼ 3) reconstructed "-machines.

For Examples A, B and C the reconstructed "-machines give good agreement.
For Example D, however, the reconstructed "-machine requires more memory
and still has an entropy density h� significantly higher than that of the Even
Process. The last column gives � ¼ C� � E� rh� as a consistency check
derived from equation (23) of Varn et al. (2013), which describes order-r
Markov processes. Recall that the Even Process of Example D is not a finite-r
process and so equation (23) of Varn et al. (2013) does not hold. All one can
say is that E � C� (Shalizi & Crutchfield, 2001), which is the case for Example
D.

System Range h� (bits/ML) C� (bits) E (bits) � (bits)

Example A 3 0.44 2.27 0.95 0.00
"-machine 3 0.44 2.27 0.95 0.00

Example B 4 0.51 2.86 0.82 0.00
"-machine 3 0.54 2.44 0.83 �0.01

Example C 1 0.67 0.92 0.25 0.00
"-machine 1 0.67 0.92 0.25 0.00

Example D 1 0.67 0.92 0.91
"-machine 3 0.79 2.58 0.21 0.00

Figure 16
A comparison between the DPs Ið‘Þ generated by the r ¼ 3 reconstructed
"-machine (red dashed line) and by the Even Process of Example D (solid
blue line). The agreement is good (R = 9%) except in the region
0:7<� ‘<� 0:9. Notably, the DP for the Even Process has an isolated zero
at ‘ ¼ 5=6.



stacking of MLs [see x2.1 of Varn et al. (2013)] are not met

then, since equation (1) of Varn et al. (2013) is no longer valid,

the CFs found by Fourier analysis will not reflect the actual

correlations between MLs. This will likely be interpreted as

poor figures-of-merit and "MSR will terminate at step 1.

Of the four possible difficulties only (ii) and (iii) should be

considered to be inherent to "MSR. It is satisfying that

"MSR can detect errors in the DP and then stop, so that it does

not generate an invalid representation that simply describes

‘error’ or ‘noise’.

4. Characteristic lengths in CPSs

We now return to one of the mysteries of polytypism, namely

that of the long-range order which they seem to possess. It is of

interest, then, to ask what, if anything, the spectrally recon-

structed "-machine indicates about the range of interactions

between MLs. In this section, we discuss and quantify several

characteristic lengths that can be estimated from recon-

structed "-machines.

(i) Correlation length, �c. From statistical mechanics, we

have the notion of a correlation length (Binney et al., 1992;

Yeomans, 1992), which is simply the characteristic length scale

over which ‘structures’ are found. The CFs QcðnÞ, QaðnÞ and

QsðnÞ are known to decay exponentially to 1/3 for many

disordered stackings (Estevez-Rams et al., 2003).8 We there-

fore define the correlation length, �c, as the characteristic

length over which correlation information is lost with

increasing separation n. More precisely, let us define �qðnÞ as

�qðnÞ ¼
P
�

jQ�ðnÞ �
1
3 j; ð4Þ

so that �qðnÞ gives a measure of the deviation of the CFs from

their asymptotic value. Then we say that

�qðnÞ / ‘oscillating term’	 2�n=�c : ð5Þ

For those cases where the CFs do not decay to 1/3, we say that

the correlation length is infinite. We find that exponential

decay is not always obeyed, but it seems to be common,9 and

the correlation length thus defined gives a useful measure of

the rate of coherence loss as n increases. Our definition of

correlation length is similar to the characteristic length L

defined by Shrestha & Pandey (1996, 1997).

(ii) Recurrence length, P. For an exactly periodic process,

the period gives the length over which a template pattern

repeats itself. We can generalize this for arbitrary, aperiodic

processes in the following way. Let us take the recurrence

length P as the geometric mean of the distances between visits

to each CS weighted by the probability to visit that CS:

P 

Y

Si2S

T
pi
i ; ð6Þ

where Ti is the average distance between visits to a CS and pi

is the probability of visiting that CS. Then,

P ¼
Y

Si2S

ð2log2 TiÞ
pi

¼
Y

Si2S

2�pi log2 pi

¼ 2
�
P
Si2S

pi log2 pi

¼ 2C� ; ð7Þ

where we have used the relation Ti ¼ 1=pi.

For periodic processes, C� ¼ log2 P and so P is simply a

process’s period. For aperiodic processes P gives a measure of

the average distance over which the "-machine returns to a CS.

Notice that this is defined as the average recurrence length in

the Hägg notation. For cubic and rhombohedral structures, for

example, this is one-third of the physical repeat distance in the

absolute stacking sequence.

(iii) Memory length, r‘. Recall from x3.1 of Varn et

al. (2013) that the memory length is an integer which specifies

the maximum number of previous spins that one must know in

the worst case to make an optimal prediction of the next spin.

For an rth-order Markov process this is r.

(iv) Interaction length, rI. The interaction length is an integer

that gives the maximum range over which spin–spin interac-

tions appear in the Hamiltonian.

We calculated the �c, P and r‘ (in units of MLs) for

Examples A–D as well as for three crystal structures and a

completely random stacking of MLs (that still obeys the

stacking constraints, however). The results are displayed in

Table 7. We see that each captures a different aspect of the

system. The correlation length �c sets a scale over which a

process is coherent. For crystals, as shown in Table 7, this

length is infinite. For more disordered systems, this value

decreases. The generalized period P is a measure of the scale

over which the pattern produced by the process repeats. The

memory length r‘ is most closely related to what we might

think as the maximum range of ‘influence’ of a spin. That is, it

is the maximum distance over which one might need to look to

obtain information to predict a spin’s value.
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Table 7
The three characteristic lengths that one can calculate from knowledge of
the "-machine: the correlation length �c, the recurrence length P and the
memory length r‘.

For comparison, we also give these quantities for several common crystalline
structures as well as a completely random process.

System �c P r‘

Example A, r ¼ 3 �7.4 4.8 3
Example B, r ¼ 4 �7.8 7.3 4
Example C, Golden Mean �4.5 1.9 1
Example D, Even Process �1.7 1.9 1

3C 1 1 0
2H 1 2 1
6H 1 6 3
Completely random 1 1 0

8 There are some exceptions to this. See Kabra & Pandey (1988), Yi &
Canright (1996) and Varn (2001) for examples.
9 The exponential decay of correlations is discussed by Crutchfield &
Feldman (2003).



For periodic, infinitely correlated systems, spins at large

separation carry information about each other, as seen in

crystals. But this information is redundant. Outside a small

neighborhood one gets no additional information by knowing

the orientation a spin assumes. Notice that one can have an

infinite memory length with a relatively small correlation

length, as seen for the Even Process (Example D). That is,

even though on average the knowledge one has about a spin

may decay, there are still configurations in which distantly

separated spins carry information about each other that is not

stored in the intervening spins.

If we know the "-machine for a process, then we can directly

calculate �c, P and r‘. How, then, do these relate to the

interaction length rI? Infinite correlation lengths can be

achieved with very small rI, as in the case of simple crystals. So

correlation lengths alone imply little about the range of

interactions. For a periodic system in the ground state, the

configuration’s period puts a lower bound on the interaction

length via rI � log2 P, barring fine tuning of parameters, such

as found at the multiphase boundaries in the ANNNI model

(Yeomans, 1988) or those imposed by symmetry considera-

tions (Canright & Watson, 1996; Yi & Canright, 1996; Varn &

Canright, 2001). The most likely candidate for a useful relation

between rI and a quantity generated from the "-machine is r‘.

Indeed, r‘ sets a lower bound on rI, if the system is in equili-

brium. For polytypes, the multitude of observed structures

suggests that most are not in equilibrium but rather trapped in

nonequilibrium metastable states. Consequently, one does not

know what the relation between rI and r‘ is. It is conceivable,

especially in the midst of a solid-state phase transition, that

small rI could generate large r‘ (Varn & Crutchfield, 2004).

While an "-machine is a complete description of the under-

lying stacking process, one must additionally require that the

material is in equilibrium in order to make inferences

concerning rI. This reflects the different ways in which a

Hamiltonian and an "-machine describe a material.

5. Conclusions

We demonstrated the feasibility and accuracy of "-machine

spectral reconstruction by applying it to four simulated DPs.

In each case, we find that "MSR either reproduces the

statistics of the stacking structure, as for Examples A and C, or

finds a close approximation to it. Elsewhere, we applied the

same procedures to the analysis of experimental DPs from

single-crystal planar faulted ZnS, focusing on the novel

physical and material properties that can be discovered with

this technique (Varn et al., 2007).

It is worthwhile to return one final time to some of the

important features of "MSR. (i) "MSR makes no assumptions

about either the crystal or faulting structures that may be

present. Instead, using correlation information as input,

"MSR constructs a model of the stacking structure – in the

form of an "-machine – that reproduces the observed corre-

lations. Therefore, the algorithm need not rely on the

experience or ingenuity of the researcher to make a priori

postulates about crystal or fault structure. (ii) As the analysis

of Example A shows, "MSR is able to detect and describe

stacking structures that contain multiple crystal and fault

structures. Indeed, Example A represented a specimen that

was predominantly 2H, but also had significant portions of 3C

crystal structure. Additionally, two faulting structures, growth

and deformation faults, were identified. (iii) Since "MSR does

not need to assume any underlying crystal structure, it can

detect and describe even highly disordered structures.

Example C has significant disorder (h� = 0.67 bits/ML) and

does not contain any readily identifiable crystal structure.

Nevertheless, "MSR is capable of finding and describing the

statistics of even such highly disordered stacking structures.

(iv) "MSR uses all of the information available in a DP. By

integrating the DP over a unit interval in reciprocal space to

find the CFs, "MSR makes no distinction between broadband

scattering and Bragg-like peaks. Each is treated equally.

Indeed, even though Example B shows both Bragg-like peaks

as well as considerable broadband scattering between peaks,

"MSR naturally captures the information contained in both by

integrating over the entire DP. (v) It is advantageous not to

invoke a more complicated explanation than is necessary to

understand experimental data. By initially assuming a small

memory length and incrementing this as needed to improve

agreement between theory and experiment, as well as merging

stacking ‘histories’ with equivalent ‘futures’, "MSR builds the

smallest possible model that reproduces the experimentally

observed DP without over-fitting the data. Example C shows

how "MSR is able to find this minimal expression for the

stacking structure. (vi) Finally, the resulting expression of the

stacking structure, the process’s "-machine, allows for the

calculation of parameters of physical interest. For each

example, we were able to find the configurational entropy

associated with the stacking process and the statistical

complexity of the stacking structure. In a companion paper

(Varn et al., 2007), we show how the average stacking (fault)

energy and hexagonality may be calculated from the

"-machine.

Additionally, we have identified three length parameters

that are calculable from the "-machine: the correlation length,

�c; the recurrence length, P; and the memory length, r‘. Each

measures a different length scale over which structural orga-

nization appears. New to this work is P, which is a general-

ization of the period of a periodic process. P is a measure of

the average length between visits to each CS. As such it

quantifies the average distance over which the pattern repeats

itself. Thus, both periodic and aperiodic patterns have a

characteristic length scale after which they begin to repeat.

The last length parameter we identified is r‘, the distance over

which an ML can carry nonredundant information about the

orientation of another ML. This is most closely related to the

rI. If the assumption of equilibrium can be made for polytypes,

r‘ places a lower bound on rI. But the assumption of equili-

brium is critical and not likely met by many polytypes.

Even with these advantages, however, "MSR as practiced

here is not without its shortcomings. Perhaps most restrictive

is that "MSR is limited to Markov processes and has only been

worked out for third-order Markov processes. Since the
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maximum number of terms in the SEs grows as the expo-

nential of an exponential in the memory length, the task of

writing out the higher-order SEs quickly becomes prohibi-

tively difficult. While the r ¼ 4 case is almost certainly tract-

able, the r ¼ 5 is questionable and r � 6 is probably not (with

current methods). Although r ¼ 3 "-machines identify much

of the structure in higher-order processes, we found two

difficulties. (i) Approximations made in the derivation of the

SEs can result in sequence probabilities that differ from those

of the true process, as seen in Example B. (ii) The state-

labeling scheme imposes a CS architecture on the recon-

structed "-machine that may be too restrictive. The "-machine

in Example D belonged to a class of processes, formally known

as sofic processes, that have a special kind of infinite-range

memory. The CSs on the "-machines that describe these

processes cannot be specified by any finite history. So, the

scheme of labeling states by the last r spins seen, as is done

here, represents a serious drawback to "MSR.

Lastly, we note the "MSR can help give a detailed account

of how a crystal becomes disordered. In order to determine

the mechanism of faulting in, say, an annealed crystal under-

going a solid-state phase transition, it is desirable to begin with

many (identical) crystals and arrest the solid-state transfor-

mation at various stages. By reconstructing the "-machine

after different annealing times, the route to disorder can be

made plain. The result is a picture of how structure (as

captured by intermediate "-machines) changes during

annealing. This change in structure should give direct insight

into the structure-forming mechanisms. This should be

compared with the numerical simulation of faulting in a

crystal (Kabra & Pandey, 1988; Engel, 1990; Shrestha &

Pandey, 1996, 1997; Gosk, 2000, 2001, 2003; Varn & Crutch-

field, 2004). We note that, in such simulations, the

"-machine can be directly calculated from the stacking

sequence to high accuracy. Some experimental work on solid-

state phase transitions has been done (Sebastian & Krishna,

1994; Boulle et al., 2010; Dompoint et al., 2012), but we hope

that this improved theoretical framework will stimulate

additional efforts in this direction.
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